Evidence for rock surface alteration with ChemCam

 from Curiosity's first 90 sols? Introduction: On Earth, rock coatings and rinds may develop in veryarid -environments through interactions between the rock surface, arid -environments through interactions between the rock surface, airborne dust, and moisture in the atmosphere. Ane composition and
thickness of coatings and rinds provide much information about the style of chemical alteration (and amount of water) to which the rock has been exposed. As such, the potential observation of coatings or rinds on Mars provides information about -both the climate and the presence and abundance of water in the surface environment. Previous studies have cited evidence for alteration on the surfaces of martian rocks [e.g. 1-3]. Here we show ChemCam-derived rock compositions by laser shot (e.g. composition by depth) from rock targets measured in the first 100 sols of the mission.

Rocknest3 + Pearson, Sol 77

Jake_M1, Sol 48

Dust versus coatings: How to differentiate?

- Results show that all rock surfaces have similar compositions, consistent with dust
- Rock surfaces are visibly dusty \rightarrow but could there also be a coating?
- A layer of airfall-deposited dust would produce similar effects to a coating with a composition similar to the dust
- No sudden transition in LIBS spectra expected between a coating and host rock [4, 5]

To differentiate between these two models:

- Number of shots required to reach a stable rock composition - Loose material is easier to ablate than a coating
- Laboratory work on terrestrial coated rocks
- Additional experiments with the MSL-payload

CCAM before brushing, CCAM after brushing, and CCAM after drilling

