Evidence for rock surface alteration with ChemCam N. L. Lanza¹, R. B. Anderson², D. Blaney³, N. Bridges⁴, B. Clark⁵, S. Clegg¹, D. Delapp¹, B. Ehlmann⁵, C. Hardgrove², R. Leveille® N. Mongold® N. Molikoebiil R. V. Mortzagenppall H. Newcom²? A. Olikal² R. Wignes¹, and the MSI.

from Curiosity's first 90 sols?

N. L. Lanza¹, R. B. Anderson², D. Blaney³, N. Bridges⁴, B. Clark⁵, S. Clegg¹, D. Delapp¹, B. Ehlmann⁶, C. Hardgrove⁷, R. Leveille⁸, N. Mangold⁹, N. Melikechi¹⁰, P.-Y. Meslin¹¹, A. Mezzacappa¹⁰, H. Newsom¹², A. Ollila¹², R.Wiens¹, and the MSL Science Team. ¹Los Alamos National Laboratory (nlanza@lant.gov), ²USGS Flagstaff, ³Jet Propulsion Laboratory, ⁴APL, John Hopkins University, ⁵Space Science Institute, ⁶California Institute of Technology, ⁷Malin Space Science Systems, ⁸Canadian Space Agency, ⁹University of Nantes, ¹⁰Deleware State University, ¹¹Institut de Recherche en Astrophysique et Planétologie, ¹²University of New Mexico.

Rocknest3 + Pearson, Sol 77

Introduction: On Earth, rock coatings and rinds may develop in very arid environments through interactions between the rock surface, airborne dust, and moisture in the atmosphere. The composition and thickness of coatings and rinds provide much information about the style of chemical alteration (and amount of water) to which the rock has been exposed. As such, the potential observation of coatings or rinds on Mars provides information about both the climate and the presence and abundance of water in the surface environment. Previous studies have cited evidence for alteration on the surfaces of martian rocks [e.g. 1-3]. Here we show ChemCam-derived rock compositions by laser shot (e.g. composition by depth) from rock targets measured in the first 100 sols of the mission.

Zephyr, Sol 71

Jake_M1, Sol 48

| Columbia | Columbia

Stark, Sol 15

Pearson Zephyr 4

PCA is a measure of <u>spectral similarity</u> Location related to composition

Ca, Mg

Si, Ca, Al, Na

Dust versus coatings: How to differentiate?

Results show that all rock surfaces have similar compositions, consistent with dust

Jake 4

- Rock surfaces are visibly dusty -> but could there also be a coating?
- A layer of airfall-deposited dust would produce similar effects to a coating with a composition similar to the dust
- No sudden transition in LIBS spectra expected between a coating and host rock [4, 5]

To differentiate between these two models:

- Number of shots required to reach a stable rock composition
 - Loose material is easier to ablate than a coating
- Laboratory work on terrestrial coated rocks
- Additional experiments with the MSL payload
- CCAM before brushing, CCAM after brushing, and CCAM after drilling

References: [1] Haskin, L. A. et al. (2005). Nature 436, 66–69. [2] McSween, H. Y. et al. (2004). Science 305, 842–845. [3] Arvidson, R. E. et al. (2004). Science 305, 821–824. [4] Lanza et al. (2012). Appl. Optics 51 (7), B74-B82. [5] Cousin, A. et al. (2011). LPSC results for the science 305 and the science 305 are science 305 and the science 305 are science 305

Image credit: NASA/JPL-Caltech/MSSS