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Introduction:  The ChemCam instrument onboard 

the Curiosity rover contains a Laser-Induced Break-
down Spectroscopy (LIBS) experiment [1; 2]. LIBS 
spectra are rich in information, with numerous atomic 
emission lines per element [3]. ChemCam spectra are 
processed using multivariate analyses to extract the 
composition and characteristics of the targets [4; 5; 6]. 

Dataset:  We study data from Sols 13 to 92 and a 
traverse of nearly 400 m. With 11,810 spectra on about 
50 martian targets, the ChemCam dataset addresses the 
need for a survey of the landing site composition [7]. 
This large volume of data also requires tools to devel-
op synthetic summaries as proposed here. The density 
plots of the abundances of the various elements detect-
ed by ChemCam reveal multimodal distributions, 
which indicates the possibility of several groups of 
more uniform composition. This is also supported by 
several trends seen between the elements [4; 8]. 

The data are pre-processed to remove the noise, the 
continuum, and the ambient light signal; They are 
normalized by the total intensity in each of the three 
spectrometers, and the instrument response is partly 
corrected. A wavelength calibration is also applied. 
Then, the data are processed through an Independent 
Component Analysis (ICA) to estimate the signal 
sources, i.e. proxies of elemental abundances [4]. Here 
we retain the ICA components corresponding to Al, Ca 
(elemental lines), CaO (molecular band), Fe, H, K, 
Mg, Na, O, Si, and Ti. The components serve as input 
to a clustering algorithm. 

Target nomenclature:  Hereafter we refer to the in-
formal names given by the MSL Science Team to the 
rocks and soils along the traverse to facilitate the dis-
cussion. The number after the name corresponds to the 
observation point sampled by ChemCam, since several 
locations were observed per target. For each of these 
points, a few tens of laser shots are used, providing 
several spectra per point. However here, we use only 
the average spectrum for each point, after removing 
those corresponding to the five first laser shots, the 
spectra from which are contaminated by dust. 

Method:  To encompass all the (useful) dimen-
sions of the compositional information extracted from 
our dataset, a clustering analysis is conducted to high-
light both the diversity and the relationship between 
the targets. It is expected that (compositional) signal 

similarities are indicative of similarity with respect to 
more fundamental geologic properties. 

We adopt the divisive algorithm described by 
Kaufman and Rousseeuw [9, chap. 6], which starts 
with the entire dataset followed by iterative binary 
subdivisions, to search for the main data structures. 
This hierarchical method is also appropriate to find the 
optimal number of clusters and to reveal relations 
between a parent unit and its sub-units. 

Results:  The dendrogram in Figure 1 shows dis-
tinctive structures up to 10 groups, and a few outliers 
(singleton Epworth5 by its CaO signature [5]; Stark 
and Preble2 by their high-Si signatures). 

The first division separates more felsic composi-
tions seen mainly at the beginning of the mission (e.g. 
Mara seen on Sol 15 [10; 11]) from other compositions 
(more numerous, but this is a sampling bias) found all 
along the traverse and showing on average higher Fe 
and Ti contents. 

 
Figure 1:  Dendrogram of the divisive hierarchical 
clustering analysis (from top to bottom). The height 
corresponds to the cluster size before its division; The 
cluster size is defined as the largest distance between 
any two of its observations. The divisive analysis can 
be stopped by drawing a horizontal line, and the num-
ber of clusters is the number of intercepted branches. 

The felsic group:  Based on histograms of the ICA 
components, this group is made of samples relatively 
enriched in Si and Al, and to some extent in Na, Ca 
and K. The rocks and the soils are generally mixed in 
this group (e.g. Mara and Kam9; Kilian9 and Murky4; 
Mara1 and Beechey5), except for a sub-group richer in 
Al and made almost exclusively of rocks (ThorLake2, -
3 and -4, and the conglomerates Goulburn and Link 
[12]: Goulburn7b1, -7b3 and -7b5, Link4). 
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Note that the first terrains encountered by the rover, 
where we found 95% of the samples of this felsic 
group, were rather free of fine sand with abundant 
gravels (Fig. 2), which certainly influences the tenta-
tive measurements of soils with LIBS there [10], while 
Si shows a range of values in the rocks [13]. At least 
one observation of that group (Kilian9 on Sol 72), was 
obtained later in the mission, at the Rocknest station, 
and may perhaps suggest that felsic-like compositions 
can be found (here, in the soil) at other locations than 
the Bradbury landing area. 

The basic group:  The lower abundance of Si in 
this group corresponds more to basic compositions. 
Most of the samples in this group are also relatively 
enriched in Ti and Fe with respect to the felsic group. 
They have a similar distribution of H for low abun-
dances, but the group also include high-H samples 
compared to the felsic group. 

As shown in Figure 1, the group of basic composi-
tions is subdivided clearly into rocks enriched in Fe 
(and Ti on average) dominated by samples from the 
Rocknest area on one side, and another subgroup dom-
inated by soils enriched in H and Mg (as well as Ca 
and Si on average) on the other side. In the latter sub-
group, the soils are found essentially in the branch 
enriched in H, while a mixture of rocks and soils is 
found in the other branch characterized by higer Na 
and other elements similar to the first felsic group but 
richer in Mg rather than in Si and Al (the quality crite-
rion for that cluster is not strong; not shown). Indeed, 
we found rocks split between the two extremes of the 
dendrogram, such as some observations on Jake Mati-
jevic (Jake_1) or Beaulieu (which hit both soils and 
pebbles), revealing the different components sampled 
with the laser and forming these targets. 

To reach the soils (Akaitcho, Beechey, Crestaurum, 
Epworth, Kenyon, Schmutz), we followed the branch 
enriched in Mg and then in H, in comparison to the 
targets dominated by Fe and then Na (Fig. 1), which is 
consistent with an ICA component identified by Forni 
et al. [4] respectively correlated and anticorrelated to 
these elements and providing a good proxy to chemi-
cally identify the soils in the ChemCam data collec-
tion. This soil subgroup, enriched in H and depleted in 
Si and alkaline elements, is described as Type 1 in the 
soil survey by Meslin et al. [10]. Crestaurum2-1 is a 
good representative of the soil subgroup, and Bathurst 
is the only unambiguous rock falling in this subgroup, 
although it is not particularly enriched in hydrogen. 

Further subdivisions are possible, some involving 
oxygen that may partly reflect residual physical effects 
(e.g. laser coupling with the target or distance) since 
part of the laser-induced emission line is produced by 
the atmosphere [14]. 

The targets that are poorly classified in the soil 
group are generally occurrences when ChemCam was 
pointing at a rock but the laser hit soils, or more prob-
ably a mixture of soils and rocks, either because some 
points missed a rock (e.g. top of Rocknest3) or because 
the rock was partly covered with soils (e.g. Pearson). 

Conclusions:  While this first unsupervised classi-
fication of ChemCam targets primarily reaches the 
same conclusions as some other analyses, it provides 
an important tool for rapid assessment of new observa-
tions: are we seing the same old stuff or new materi-
als? How many clusters describe our dataset? 

This approach can be improved in many ways, for 
example by considering clustering quality criteria, or 
more elements such as minor elements [15], and more 
importantly by giving a geological meaning to the 
groups. One expected outcome is to highlight the rela-
tionships between targets that are physically different 
or geographically separated, but are chemically simi-
lar. One exemple is the rock Mara (Sol 19) and the 
“soil” Kam (Sol 43), which fall into the same category 
in our analysis, even at a fine level and with good 
confidence. It is essential to understand these surficial 
materials to make the link between ground truth and 
remote observations from space [16]. 

 
Figure 2:  ChemCam image of the Kam target with a 
mixture of coarse grains and pebbles, defining a dis-
tinctive type of soils [10; 13]. 
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